SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 ASSESSMENT TASK 2

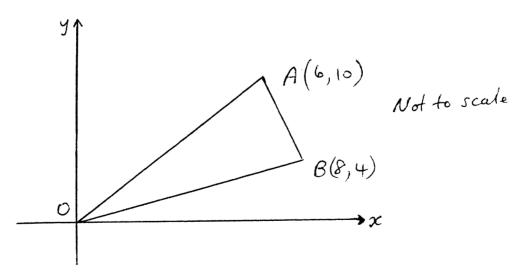
MARCH 2004

MATHEMATICS 2 UNIT

Time allowed:

70 minutes

Instructions:


- Start each question on a new page
- Full marks may not be awarded if working is incomplete or illegible.

Name:____

Teacher:____

Q1	Q2	Q3	Q4	Q5	Total
/10	/10	/10	/10	/10	/50

Question 1

- a) Copy this diagram above onto your answer page
- b) Find the length of OA in surd form.

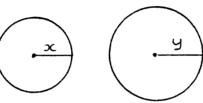
1

c) Find the gradient of OA

- d)
- Find the equation of OA in general form

2

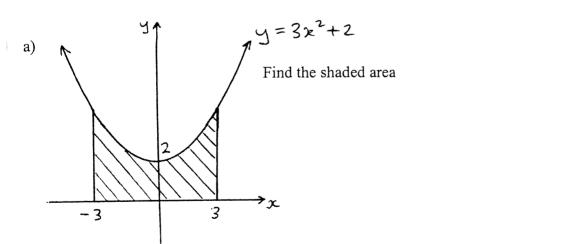
2


3

- K is on OA such that $BK \perp OA$. Use your answer in part (c) to find the gradient e) of BK and hence the equation of BK.
- Find the perpendicular distance BK and hence the area of Δ OAB. 3 f)
- 1 Find the coordinates of a point C such that OABC is a parallelogram g)

Question 2

a) Given
$$\frac{dy}{dt} = 12t^2 + t$$
 and that $y = 20$ when $t = 2$, find y in terms of t


- (i) Find $\int (x^2 + \frac{3}{x^2}) dx$ 2 b)
 - (ii) Evaluate $\int_1^3 \frac{1}{\sqrt{x}} dx$ 2
- Two circles are such that the sum of their radii is constant c) at 10 cm.

Let the radii of the two circles be $x \, \text{cm}$ and $y \, \text{cm}$.

- Show that the sum of their areas is given by $A = 2\pi x^2 20\pi x + 100\pi$ 1 (i)
- Show that the sum of their areas will be a minimum when the radii are equal 3 (ii)

Question 3

- Find the x values of the points of intersection of the graphs of $y = x^2 6x$ 1 b) (i) and y = 2x.
 - 3 Find the area between the two graphs above. (ii)
- Find the area between the curve $y = x^3$, the y axis and the lines c) 3 y = 1 and y = 8

Question 4

a) Find a primitive of $(3x + 2)^4$

1

- b) For the curve $y = 6x^2 x^3 + 9$:
 - (i) Find the stationary points and determine their nature

4

(ii) Determine any point (s) of inflexion

2

(iii) Sketch the curve over the domain $-3 \le x \le 5$

2

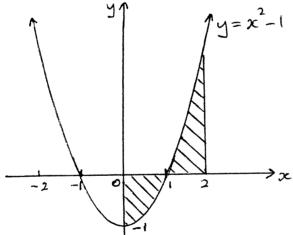
- (iv) In this domain, determine the maximum value of the function.
- 1

Question 5

a) Sketch a curve on a number plane that satisfies all conditions below:

3

3

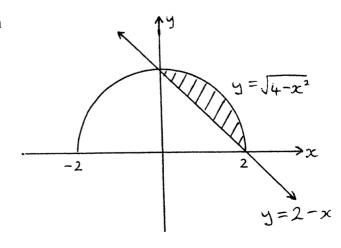

$$f(0) = 2$$

When
$$x < 0$$
, $f^{\dagger}(x) < 0$ and $f^{\dagger \dagger}(x) > 0$

When
$$x > 0$$
, $f^{i}(x) < 0$ and $f^{ii}(x) < 0$.

b)

c)


Find the shaded area

The graphs of y = 2 - x and $y = \sqrt{4 - x^2}$ are shown.

Find the volume generated when

the shaded area shown

is rotated about the x - axis.

Solutions.

()
$$M_{AB} = \frac{12}{5}$$
 (1)

d)
$$y = \frac{5}{3}x$$
, $3y = 5x$
 $\frac{1}{2}$. $5x - 3y = 0$

e)
$$M_{BK} = -\frac{3}{5}$$
 ①

i. eqn. of BK is

 $y-4 = -\frac{3}{5}(x-8)$

$$5y-20 = -3x + 24$$

 $3x + 5y - 44 = 0$

$$\rho \cdot d = \frac{5 \times 8 + (-3) \times 4 + 0}{\sqrt{5^2 + 3^2}}$$

$$= \frac{28}{\sqrt{34}} \quad \text{Ocorrect}$$
applic.

(2) a)
$$y = 4t^3 + \frac{t^2}{2} + c$$
 (1)
 $y = 20, t = 2$:
 $\therefore 20 = 32 + 2 + c$ ($c = -14$)
 $\therefore y = 4t^3 + \frac{t^2}{2} - 14$ (1)

(ii)
$$\int_{1}^{3} (2x^{2} + 3x^{-2}) dx$$

= $\frac{x^{3}}{3} + \frac{3x^{-1}}{4} + c$ 0
= $\frac{x^{3}}{3} - \frac{3}{x} + c$ 0
(iii) $\int_{1}^{3} x^{-1/2} dx = \left[\frac{x^{1/2}}{2}\right]_{1}^{3}$ 0
= $\left[2\sqrt{3}\right]_{1}^{3}$
= $\left[2\sqrt{3}\right]_{1}^{3}$

c) (i)
$$A = \pi x^{2} + \pi y^{2}$$

(and $x + y = 10$
 $\therefore y = 10 - x$)
 $\therefore A = \pi x^{2} + \pi (10 - x)^{2}$

$$A = \pi x^{2} + \pi (10 - x)^{2}$$

$$= \pi x^{2} + \pi (100 - 20x + x^{2})$$

$$= \pi x^{2} + 100\pi - 20\pi x + \pi x^{2}$$

$$= 2\pi x^{2} - 20\pi x + 100\pi$$

(ii) min area when
$$dA = 0$$
 $dA = 4\pi x - 20\pi = 0$
 $4\pi(x-5) = 0$
 $x = 5$
 $dA = -10 + 1$
 $dx = 5$
 $dA = -10 + 1$
 $dx = 5$
 $dA = 2x = 6$
 $dA = 2x = 6$

$$x^{2} - 8x = 0$$

$$x(x-8) = 0$$

$$x = 0 \text{ or } 8 \text{ } 0$$

$$(ii) A = \left| \int_{0}^{8} (x^{2} - 6x - 2x) dx \right|$$

$$= \left| \int_{0}^{8} (x^{2} - 8x) dx \right|$$

$$= \left| \left[\frac{x^{3}}{3} - 4x^{2} \right]_{0}^{8} \right| 0$$

$$= |(5\frac{12}{3} - 256) - (0 - 0)|$$

$$= |(70^{\frac{7}{3}} - 256)|$$

$$= |- 95^{\frac{1}{3}}|$$

$$= |(8\frac{1}{3})|$$

$$= |(8\frac{1})|$$

$$= |(8\frac{1}{3})|$$

$$= |(8\frac{1}{$$

(iv) maximum value is 90 or y = 90

 $\begin{array}{c}
(5) \\
(0) \\
(2) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0) \\
(0)$

b) $A = \left[\int_{0}^{1} (2^{2} - 1) du \right] + \int_{1}^{2} (x^{2} - 1) dx$ $= \left[\left[\frac{1}{3} - x \right]_{0}^{1} \right] + \left[\frac{1}{3} - x \right]_{1}^{2}$ $= \left[\left(\frac{1}{3} - 1 \right) - (0 - 0) \right] + \left(\frac{1}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right)$ $= \left[-\frac{1}{3} \right]_{1}^{2} + \frac{1}{3} - \left(-\frac{1}{3} \right)_{1}^{2}$ $= \left[-\frac{1}{3} \right]_{1}^{2} + \frac{1}{3} - \left(-\frac{1}{3} \right)_{1}^{2}$ $= \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $= \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $= \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $= \frac{1}{3} + \frac{1$

= T[24-x2-(4-4x+x2)d

 $= T \int_{0}^{2} (4 - x^{2} - 4 + 4x - x^{2}) dx$

= T So (4x-2x2) dx 1

$$= \pi \left[2x^{2} - \frac{2x^{3}}{3} \right]^{2} \quad 0$$

$$= \pi \left[\left(8 - \frac{16}{3} \right) - \left(0 - 0 \right) \right]$$

$$= \pi \times 2^{\frac{2}{3}}$$

$$= 8\pi u^{3} \quad 0$$